UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

DIVISIÓN DE ESTUDIOS DE POSGRADO FACULTAD DE INGENIERÍA MECÁNICA

DATOS GENERALES

NOMBRE DEL PROGRAMA:

Maestría en Ciencias en Ingeniería Mecánica

REFERENCIA CONACYT:

000162

ORIENTACIÓN DEL PROGRAMA:

Investigación

NIVEL ÚLTIMO DICTAMEN:

En desarrollo

ÁREAS DEL CONOCIMIENTO:

- Diseño Mecánico y Ciencias de los Materiales en Ingeniería
- Termodinámica Aplicada y Energías Alternas
- Transferencia de Calor y Fluidodinámica

DEPENDENCIA ACADÉMICA:

Facultad de Ingeniería Mecánica

RESPONSABLES DEL PROGRAMA:

Crisanto Mendoza Covarrubias - Director Carlos Rubio Maya - Jefe de la División de Estudios de Posgrado J. Jesús Pacheco Ibarra - Coordinador

CONTENIDO

CURSO PROPEDEUTICO	4
MATEMÁTICAS	5
MECÁNICA	8
TERMODINÁMICA	12
MECÁNICA DE FLUIDOS	16

CURSO PROPEDEUTICO

Este curso tiene como objetivo proporcionar al alumno una revisión de los conocimientos fundamentales de la Ingeniería Mecánica. Al finalizar el curso propedéutico el alumno estará preparado para presentar el examen de ingreso. El curso propedéutico será de carácter obligatorio, o a criterio del Consejo Interno, y se repasaran los contenidos básicos de:

- Matemáticas
- Mecánica
- Termodinámica
- Mecánica de Fluidos

ASIGNA [*]	TURA:	MATEN	/ATIC	AS					
TIPO*:	PROP	EDEUTI	СО	CRÉDITOS	0		CLAVE	СР	
			DU	JRACIÓN DEL	CUR	SO			
SEMANA	AS:	4	HORA	AS/SEMANA:		6	HORAS TOTALES:		24

OBJETIVO GENERAL

Presentar y revisar los conceptos matemáticos necesarias que le faciliten el estudios de principios, teorías y leyes, para la solución de problemas físicos.

	CONTENIDO SINTÉTICO								
CAP.	TITULO	HRS.	%	%AC.					
1	ECUACIONES DIFERENCIALES DE PRIMER ORDEN	10	42	42					
2	SOLUCIÓN EN SERIES DE POTENCIA DE LAS EDO	8	33	75					
3	TRANSFORMADA DE LAPLACE	6	25	100					
	TOTAL	24	100	100					

CONTENIDO

CAPÍTULO 1. ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Objetivo: Conocer las ecuaciones diferenciales de primer orden y algunos métodos de soluciój.

- 1.1. Conceptos e ideas básicas.
- 1.2. Ecuaciones diferenciales separables.
- 1.3. Modelado: ecuaciones separables.
- 1.4. Reducción a la forma separable.
- 1.5. Ecuaciones diferenciales exactas.
- 1.6. Factores integrantes.
- 1.7. Ecuaciones diferenciales lineales.
- 1.8. Trayectorias ortogonales de curvas.
- 1.9. Soluciones aproximadas.
- 1.10. Existencia y unicidad de las soluciones.

CAPÍTULO 2. SOLUCIÓN EN SERIES DE POTENCIA DE LAS EDO

Objetivo: Presentar las series de potencia como una alternativa a la solución de ecuaciones diferenciales ordinarias (EDO).

- 2.1. Método de las series de potencias.
- 2.2. Teoría del método de las series de potencias.
- 2.3. Ecuación de Legendre. Polinomios de Legendre Pn(x).
- 2.4. Método de Frobenius.
- 2.5. Ecuación de Bessel. Funciones de Bessel Jv(x).
- 2.6. Propiedades adicionales de Jv(X).
- 2.7. Funciones de Bessel de Segunda Clase.
- 2.8. Problemas de Sturm-Liouville. Ortogonalidasd.
- 2.9. Desarrollo de eigenfunciones.

CAPÍTULO 3. TRANSFORMADA DE LAPLACE

Objetivo: Revisar el concepto de la Transformada de Laplace y su importancia en la Ingeniería.

- 3.1. Transformada de Laplace. Transformada inversa. Linealidad.
- 3.2. Transformadas de derivadas e integrales.
- 3.3. Traslación S, traslación t. Función escalón unitario.
- 3.4. Aplicaciones adicionales. Función delta de Dirac.
- 3.5. Derivación e integración de transformadas.
- 3.6. Convolución. Ecuaciones integrales.
- 3.7. Fracciones parciales. Sistemas de ecuaciones diferenciales.
- 3.8. Funciones periódicas. Aplicaciones adicionales.
- 3.9. Transformada de Laplace: Formulas generales.
- 3.10. Tabla de Transformadas de Laplace.

TÉCNICAS DE ENSEÑANZA					
Exposición oral	X				
Búsqueda de información documental por parte del alumno.	X				
Técnicas para la resolución de problemas.	X				
Tareas y trabajos extra-clase.	X				
Recursos audiovisuales y otras tecnologías.	X				
Seminarios.					
Uso de software especializado.					
Simulación.					
Reportes escritos.					
Otros.					

ELEMENTOS DE EVALUACIÓN	
Exámenes.	X
Solución de problemas.	X
Exposiciones.	X
Proyectos.	
Asistencia.	X
Elaboración de informes y artículos científicos.	

	PERFIL DEL DOCENTE								
CONOCIMIENTOS Haber trabajado en el área de la asignatura									
EXPERIENCIA	PERIENCIA Participación en proyectos de investigación								
PROFESIONAL	relacionados con el tema								
	Haber impartido clases								
HABILIDADES	Dominio de la asignatura								
	Transmisión de conocimientos								
	Capacidad de análisis y síntesis								
	Manejo de materiales didáctico								
ACTITUDES	Honestidad								
	Compromiso con la docencia								
	Respeto y tolerancia								
	Superación personal, docente y profesional								

- [1]. O'neil, Peter V. **Matemáticas Avanzadas para Ingeniería. Vol. I y II**. Editorial CECSA. Grupo Patria Cultural. 3era. edición. 2004.
- [2]. Kreyszig. **Matemáticas Avanzadas para Ingeniería. Vol. I y II.** Editorial Limusa Wiley. 3era. edición. 2002.
- [3]. Duchateau, P. Zachmann, D. **Applied Partial Differential Equations.** Dover Publications, Inc. Mineola, N.Y. 2002.

ASIGNA [*]	TURA:	MECÁI	VICA						
TIPO*:	PROP	EDEUTI	СО	CRÉDITOS	0		CLAVE	СР	
			DU	JRACIÓN DEL	CUR	SO			
SEMANA	AS:	4	HORA	AS/SEMANA:		6	HORAS TOTALES:		24

OBJETIVO GENERAL

Proporcionar los principios básicos de la teoría del medio continuo con el propósito de que sirva como base a los cursos de mecánica de sólidos, mecánica de fluidos, elasticidad, etc.

CONTENIDO SINTÉTICO								
CAP.	TITULO	HRS.	%	%AC.				
1	INTRODUCCIÓN A LA ESTÁTICA	4	16	25				
2	SISTEMAS DE FUERZAS	4	16	38				
3	INTRODUCCIÓN A LA DINÁMICA	4	16	63				
4	CINEMÁTICA DEL PUNTO	6	26	88				
5	CINEMÁTICA PLANA DE LOS CUERPOS RÍGIDOS	6	26	100				
	TOTAL	24	100	100				

CONTENIDO

CAPÍTULO 1. INTRODUCCIÓN A LA ESTÁTICA

Objetivo: Proporcionar un panorama general de la estática.

- 1.1. Mecánica.
- 1.2. Conceptos fundamentales.
- 1.3. Escalares y Vectores.
- 1.4. Leyes de Newton.
- 1.5. Unidades.
- 1.6. Ley de la Gravitación.
- 1.7. Precisión, Límites y Aproximaciones.

CAPÍTULO 2. SISTEMAS DE FUERZAS

Objetivo: Proporcionar los fundamentos relativos a los sistemas de fuerzas.

- 2.1. Introducción
- 2.2. Fuerzas.

SECCIÓN A. SISTEMAS DE FUERZAS BIDIMENSIONALES.

- 2.3. Componentes rectangulares.
- 2.4. Momento.

- 2.5. Par.
- 2.6. Resultantes.

SECCIÓN B. SISTEMAS DE FUERZAS TRIDIMENSIONALES.

- 2.7. Componentes rectangulares.
- 2.8. Momento y Par
- 2.9. Resultantes.

CAPÍTULO 3. INTRODUCCIÓN A LA DINÁMICA

Objetivo: Revisar los principales conceptos de la dinámica.

- 3.1. Historia y Aplicaciones modernas
- 3.2. Conceptos fundamentales.
- 3.3. Leyes de Newton.
- 3.4. Unidades.
- 3.5. Gravitación.
- 3.6. Dimensiones.
- 3.7. Planteamiento y solución de los problemas de dinámica.

CAPÍTULO 4. CINEMÁTICA DEL PUNTO

Objetivo: Conocer las características de la cinemática de un punto.

- 4.1. Introducción.
- 4.2. Movimiento rectilíneo.
- 4.3. Movimiento curvilíneo plano.
- 4.4. Coordenadas rectangulares (x-y)
- 4.5. Coordenadas tangencial y normal (n-t).
- 4.6. Coordenadas polares (r-theta).
- 4.7. Movimiento curvilineo en el espacio.
- 4.8. Movimiento relativo (ejes en rotación).
- 4.9. Movimiento vinculado de puntos materiales conectados.

CAPÍTULO 5. CINEMÁTICA PLANA DE LOS CUERPOS RÍGIDOS

Objetivo: Presentar los aspectos relacionados con la cinemática plana de cuerpos rígidos.

- 5.1. Introducción.
- 5.2. Rotación.
- 5.3. Movimiento absoluto.
- 5.4. Velocidad relativa.
- 5.5. Centro instántaneo de rotación.
- 5.6. Aceleración relativa.
- 5.7. Movimiento relativo a ejes de rotación.

TÉCNICAS DE ENSEÑANZA	
Exposición oral	Χ
Búsqueda de información documental por parte del alumno.	Χ
Técnicas para la resolución de problemas.	Χ
Tareas y trabajos extra-clase.	Χ
Recursos audiovisuales y otras tecnologías.	Χ
Seminarios.	
Uso de software especializado.	
Simulación.	
Reportes escritos.	
Otros.	

ELEMENTOS DE EVALUACIÓN	
Exámenes.	Χ
Solución de problemas.	Χ
Exposiciones.	Χ
Proyectos.	
Asistencia.	Х
Elaboración de informes y artículos científicos.	

	PERFIL DEL DOCENTE								
CONOCIMIENTOS Haber trabajado en el área de la asignatura									
EXPERIENCIA	Participación en proyectos de investigación								
PROFESIONAL	relacionados con el tema								
	Haber impartido clases								
HABILIDADES	Dominio de la asignatura								
	Transmisión de conocimientos								
	Capacidad de análisis y síntesis								
	Manejo de materiales didáctico								
ACTITUDES	Honestidad								
	Compromiso con la docencia								
	Respeto y tolerancia								
	Superación personal, docente y profesional								

- [1]. Ferdinand P. Beer y E. Russell Johnston Jr. **Mecánica Vectorial Para Ingenieros (Estática)**. Mc. Graw Hill
- [2]. R.C. Hibbeler. Mecánica Para Ingenieros (Estática). C.E.C.S.A.
- [3]. Ferdinand I. Singer. Mecánica Para Ingenieros (Estática). HARLA
- [4]. T.C. Huang. **Mecánica Para Ingenieros (Estática).** Representaciones y Servicios de Ingeniería, S.A.
- [5]. J.L. Meriam, L.G. Kraige. Mecánica Para Ingenieros (Estatica). Ed. Reverté.

- [6].
- [7]. Beer y Johnston. **Mecánica Vectorial Para Ingenieros (Dinámica).** Cuarta edición, Mc. Graw Hill.
- [8]. R. C. Hibbeler. **Mecánica Para Ingenieros (Dinámica).** Ed. CECSA.
- [9]. J.H. Ginsberg y J. Genin. **Dinámica.** Ed. Interamericana.
- [10]. J.L. Meriam, L.G. Kraige. **Mecánica Para Ingenieros (Dinámica)**. Ed. Reverté.

ASIGNATURA: TERMODINÁN					/IICA					
	TIPO*: BÁSICA COMPLEMENTARIA				CRÉDITOS	8		CLAVE	вс	
				DUR	ACIÓN DEL CU	RSC)			
	SEMANAS: 16 HORA				AS/SEMANA:		4	HORAS TOTALES:		64

OBJETIVO GENERAL

Revisar los conocimientos básicos que se requieren para el análisis de procesos en los que Intervienen la transformación de energía, mediante la primera y segunda ley de la termodinámica.

CONTENIDO SINTÉTICO					
CAP.	TITULO	HRS.	%	%AC.	
1	INTRODUCCIÓN Y CONCEPTOS BÁSICOS	2	8	8	
2	PROPIEDADES DE LAS SUSTANCIAS PURAS	2	8	16	
3	ANÁLISIS DE ENERGÍA DE SISTEMAS CERRADOS	6	25	41	
4	ANÁLISIS DE ENERGÍA (VOLUMEN DE CONTROL)	8	34	75	
5	LA SEGUNDA LEY DE LA TERMODINÁMICA	6	25	100	
	TOTAL 64 100 100				

CONTENIDO

CAPÍTULO 1. INTRODUCCIÓN Y CONCEPTOS BÁSICOS

Objetivo: Revisar las bases fundamentales de la termodinámica y su importancia en diversas situaciones.

- 1.1. Importancia de la Termodinámica.
- 1.2. Definición de los sistemas.
- 1.3. Propiedades de un sistema.
- 1.4. Densidad y densidad relativa.
- 1.5. Estado y equilibrio.
- 1.6. Procesos y ciclos.
- 1.7. Temperatura y Ley Cero de la Termodinámica.
- 1.8. Presión.
- 1.9. Transferencia de energía por calor.
- 1.10. Transferencia de energía por trabajo.

CAPÍTULO 2. PROPIEDADES DE LAS SUSTANCIAS PURAS

Objetivo: Conocer las sustancias puras, sus propiedades y su importancia en un análisis termodinámico.

- 2.1. Sustancia pura y sus fases.
- 2.2. Procesos de cambio de fase en sustancias puras.
- 2.3. Diagramas de propiedades para procesos de cambio de fase.
- 2.4. Tablas de propiedades.
- 2.5. Ecuación de estados de gas ideal.
- 2.6. Factor de compresibilidad.

CAPÍTULO 3. ANÁLISIS DE ENERGÍA DE SISTEMAS CERRADOS

Objetivo: Aplicar la primera ley de la termodinámica a sistemas cerrados.

- 3.1. Trabajo de frontera móvil.
- 3.2. Balance de energía para sistemas cerrados.
- 3.3. Calores específicos.
- 3.4. Energía interna.
- 3.5. Entalpía.
- 3.6. Calores específicos.

CAPÍTULO 4. ANÁLISIS DE ENERGÍA DE VOLUMENES DE CONTROL

Objetivo: Aplicar la primera ley de la termodinámica a sistemas abiertos.

- 4.1. Conservación de la masa.
- 4.2. Trabajo de flujo y energía de un fluido en movimiento.
- 4.3. Análisis de energía de sistemas de flujo estacionario.
- 4.4. Análisis de algunos dispositivos térmicos en ingeniería.

CAPÍTULO 5. LA SEGUNDA LEY DE LA TERMODINÁMICA

Objetivo: Conocer los principios de la segunda ley de la termodinámica.

- 5.1. Conservación de la masa.
- 5.2. Depósitos de energía térmica.
- 5.3. Máquinas térmicas.
- 5.4. Refrigeradores y bombas de calor.
- 5.5. Procesos reversibles v reversibles.
- 5.6. El ciclo de Carnot.
- 5.7. La máquina térmica de Carnot.

TÉCNICAS DE ENSEÑANZA		
Exposición oral	X	
Búsqueda de información documental por parte del alumno.	X	
Técnicas para la resolución de problemas.	X	
Tareas y trabajos extra-clase.	X	
Recursos audiovisuales y otras tecnologías.		
Seminarios.		
Uso de software especializado.		
Simulación.		
Reportes escritos.	X	
Otros.		

ELEMENTOS DE EVALUACIÓN		
Exámenes.	X	
Solución de problemas.	X	
Exposiciones.	X	
Proyectos.		
Asistencia.	X	
Elaboración de informes y artículos científicos.		

	PERFIL DEL DOCENTE
CONOCIMIENTOS	Haber trabajado en el área de la asignatura
EXPERIENCIA	Participación en proyectos de investigación
PROFESIONAL	relacionados con el tema
	Haber impartido clases
HABILIDADES	Dominio de la asignatura
	Transmisión de conocimientos
	Capacidad de análisis y síntesis
	Manejo de materiales didáctico
ACTITUDES	Honestidad
	Compromiso con la docencia
	Respeto y tolerancia
	Superación personal, docente y profesional

- [1]. Bejan A. (2006). **Advanced Engineering Thermodynamics.** Third Ed. John Wiley & Sons, Inc.
- [2]. Moran, M., Shapiro, H. **Fundamentals of Engineering Thermodynamics.** Fifth Ed. John Wiley & Sons, Inc.
- [3]. G.V. Wylen R.E. y Sonntang. **Fundamental of Classical Thermodynamics.** Editorial Wiley & Sons. New York. 2000.
- [4]. M. J. Moran, H. N. Shapiro, B. R. Munson, D. P. DeWitt (2003). Introduction to Thermal System Engineering: Thermodynamics, Fluid Mechanics and Heat Transfer. John Wiley & Sons, Inc.

ASIGNATURA: MECÁNICA DE				E FLUIDOS					
TIPO*: BÁSICA COMPLEMENTARIA			CRÉDITOS	8		CLAVE	вс		
	DURACIÓN DEL CURSO								
SEMANAS: 4 HORA		AS/SEMANA:		6	HORAS TOTALES:		24		

OBJETIVO GENERAL

Repasar los conceptos fundamentales de la mecánica de fluidos para que el alumno tenga la capacidad de estudiar, analizar y resolver problemas en donde intervenga la estática, la cinemática y la dinámica de los fluidos.

CONTENIDO SINTÉTICO					
CAP.	P. TITULO HRS. % %				
1	PROPIEDADES DE LOS FLUIDOS	6	25	25	
2	ESTATICA DE LOS FLUIDOS	6	25	50	
3	CINEMÁTICA DE LOS FLUIDOS	6	25	75	
4	DINAMICA DE LOS FLUIDOS	6	25	100	
	TOTAL	24	100	100	

CONTENIDO

CAPÍTULO 1. PROPIEDADES DE LOS FLUIDOS

Objetivo: Proporcionar un panorama general de las propiedades y definiciones de los fluidos.

- 1.1. Introducción a Mecánica de Fluidos.
- 1.2. Clasificación de los fluidos.
- 1.3. Medio continuo.
- 1.4. Definición de fluido.
- 1.5. Tipos de fluidos.
- 1.6. Sistema de unidades
- 1.7. Peso específico
- 1.8. Densidad de un cuerpo.
- 1.9. Gravedad específica de un cuerpo.
- 1.10. Viscosidad de un fluido.
- 1.11. Presión de vapor
- 1.12. Tensión superficial.
- 1.13. Capilaridad.
- 1.14. Compresibilidad de los fluidos.

- 1.15. Compresión y expansión de gases.
- 1.16. Velocidad del sonido.

CAPÍTULO 2. ESTÁTICA DE LOS FLUIDOS

Objetivo: Presentar las principales ecuaciones que rigen la estática de los fluidos.

- 2.1. Presión.
 - 2.1.1. Definición
 - 2.1.2. Unidades de Presión
 - 2.1.3. Presión diferencial
 - 2.1.4. Altura de presión
 - 2.1.5. Variaciones de presión en un fluido compresible
 - 2.1.6. Vacío y presión atmosférica
 - 2.1.7. Presión absoluta y manométrica
 - 2.1.8. Barómetros
 - 2.1.9. Piezómetros y manómetros
- 2.2. Fuerzas hidrostáticas sobre superficies
 - 2.2.1. Fuerzas ejercidas por un líquido sobre una área plana.
 - 2.2.2. Fuerzas ejercidas por un líquido sobre una superficie curva.
 - 2.2.3. Tensión circunferencial.
 - 2.2.4. Tensión longitudinal en cilindros de pared delgada
 - 2.2.5. Fuerzas hidrostáticas sobre presas.
- 2.3. Empuje y flotación
 - 2.3.1. Principio de Arquímides.
 - 2.3.2. Estabilidad en cuerpos sumergidos o flotantes.

CAPÍTULO 3. CINEMÁTICA DE LOS FLUIDOS

Objetivo: Describir el movimiento de los fluidos y sus principales características.

- 3.1. Introducción.
- 3.2. Descripción del movimiento de los fluidos.
- 3.3. Campo de aceleraciones.
- 3.4. Visualización de flujo.
- 3.5. Deformación de un elemento de fluido.
- 3.6. Vorticidad y rotacionalidad.

CAPÍTULO 4. DINÁMICA DE LOS FLUIDOS

Objetivo: Presentar los fundamentos correspondientes a la dinámica de los fluidos.

- 4.1. Fundamento de flujo de fluidos.
 - 4.1.1. Flujo de un fluido.
 - 4.1.2. Flujo estable.
 - 4.1.3. Flujo uniforme.
 - 4.1.4. Flujos netos.
 - 4.1.5. Carga y energía.
 - 4.1.6. Ecuación de la energía.
 - 4.1.7. Carga de velocidad.
 - 4.1.8. Teorema de Bernoulli.

- 4.2. Fuerzas ejercidas por flujos en movimiento.4.2.1. Principio de impulso-momentum.4.2.2. Factor de momentum.

 - 4.2.3. Fuerza de arrastre.
 - 4.2.4. Fuerza de sustentación.
 - 4.2.5. Numero de Mach.
 - 4.2.6. Placa límite.
 - 4.2.7. Placas planas.

 - 4.2.8. Golpe de ariete.4.2.9. Velocidades supersónicas.

TÉCNICAS DE ENSEÑANZA		
Exposición oral	X	
Búsqueda de información documental por parte del alumno.	X	
Técnicas para la resolución de problemas.	X	
Tareas y trabajos extra-clase.	X	
Recursos audiovisuales y otras tecnologías.	X	
Seminarios.		
Uso de software especializado.		
Simulación.		
Reportes escritos.	X	
Otros.		

ELEMENTOS DE EVALUACIÓN		
Exámenes.	X	
Solución de problemas.	X	
Exposiciones.	Х	
Proyectos.		
Asistencia.	Х	
Elaboración de informes y artículos científicos.		

	PERFIL DEL DOCENTE		
CONOCIMIENTOS	Haber trabajado en el área de la asignatura		
EXPERIENCIA	Participación en proyectos de investigación		
PROFESIONAL	relacionados con el tema		
	Haber impartido clases		
HABILIDADES	Dominio de la asignatura		
	Transmisión de conocimientos		
	Capacidad de análisis y síntesis		
	Manejo de materiales didáctico		
ACTITUDES	Honestidad		
	Compromiso con la docencia		
	Respeto y tolerancia		
	Superación personal, docente y profesional		

- [1]. Ranald V. Giles and Jack B. Evett and Cheng Liu. Fluid. **Mechanics and Hydraulics.** McGraw Hill.
- [2]. W. Fox Robert y T. McDonald Alan. Introducción a la Mecánica de Fluidos. McGraw Hill.
- [3]. Munson Bruce, Young Donald, Okiishi Theodore. Incropera, Davis P. DeWitt Fundamentals of Fluids Mechanics. John Wiley & Sons Inc.
- [4]. White M. Frank. Viscous Fluid Flow. Mc Graw Hill. New York.1991.

- [5]. J. R. Welty, R. E. Wilson y E. E. Wicks. Fundamental of Momentum Heat and Mass Transfer. John Wiley & Sons. 1976.
- [6]. Shlichting H. Boundary Layer Theory. Mc Graw Hill. 1979.